LiteLLM - Local Caching
Caching completion()
and embedding()
calls when switched on​
liteLLM implements exact match caching and supports the following Caching:
- In-Memory Caching [Default]
- Redis Caching Local
- Redis Caching Hosted
- GPTCache
Quick Start Usage - Completion​
Caching - cache
Keys in the cache are model
, the following example will lead to a cache hit
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
caching=True
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
caching=True
)
# response1 == response2, response 1 is cached
Caching with Streaming​
LiteLLM can cache your streamed responses for you
Usage​
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
stream=True,
caching=True)
for chunk in response1:
print(chunk)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
stream=True,
caching=True)
for chunk in response2:
print(chunk)
Usage - Embedding()​
- Caching - cache
Keys in the cache are
model
, the following example will lead to a cache hit
import time
import litellm
from litellm import embedding
from litellm.caching import Cache
litellm.cache = Cache()
start_time = time.time()
embedding1 = embedding(model="text-embedding-ada-002", input=["hello from litellm"*5], caching=True)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
start_time = time.time()
embedding2 = embedding(model="text-embedding-ada-002", input=["hello from litellm"*5], caching=True)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")