Skip to main content

LiteLLM - Getting Started

https://github.com/BerriAI/litellm

Call 100+ LLMs using the same Input/Output Format​

Basic usage​

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

Streaming​

Set stream=True in the completion args.

from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)

for chunk in response:
print(chunk)

Exception handling​

LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.

from openai.errors import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try:
# some code
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
print(e)

Logging Observability - Log LLM Input/Output (Docs)​

LiteLLM exposes pre defined callbacks to send data to LLMonitor, Langfuse, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["PROMPTLAYER_API_KEY"] = "your-promptlayer-key"
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["promptlayer", "llmonitor"] # log input/output to promptlayer, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

Calculate Costs, Usage, Latency​

Pass the completion response to litellm.completion_cost(completion_response=response) and get the cost

from litellm import completion, completion_cost
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

cost = completion_cost(completion_response=response)
print("Cost for completion call with gpt-3.5-turbo: ", f"${float(cost):.10f}")

Output

Cost for completion call with gpt-3.5-turbo:  $0.0000775000

Need a dedicated key? Email us @ krrish@berri.ai

More details​